

Comparative study on durability properties of concrete with partial replacement of fine aggregate by pvc waste

K. Narasimha Reddy, N. Anusha, A. Priyanka

Assistant Professor of Civil Engineering, QIS College of Engineering and Technology, Ongole, A.P. India Assistant Professor of Civil Engineering, QIS College of Engineering and Technology, Ongole, A.P. India Assistant Professor of Civil Engineering, QIS College of Engineering and Technology, Ongole, A.P. India

Date of Submission: 25-07-2020	Date of Acceptance: 05-08-2020

ABSTRACT: This paper presents the,pvc waste was used as a partial replacement to the concrete ingredient i.e. fine aggregate and the durabilty properties like compressive strength loss, weight loss with acid and marine attack with curing ages of 56 & 84 days were measured . For checking strength effect of partial replacement of fine aggregate by pvc waste, the fine aggregate is replaced at 2.5%, 5%, 7.5%, 10%,12.5 and15%. For this study, concrete mixtures were prepared, for structural grade M25 and M30. Durability studies like compressive strength loss and weight loss with acid and marine attack with curing ages of 56 & 84 days were conducted and comparisons have to be made with the conventional concrete.

Key words: PVC waste, Durability, Acid attack, Marine attack, Compressive strength loss,Weight loss.

I. INTRODUCTION

Concrete is the most widely used construction material in the world. There is a concern to more understanding and to improve its properties. Using waste and recycled materials in concrete mixes becoming increasingly important to manage and treat both the solid waste generated by industry and municipal waste. The advancement of concrete technology can reduce the consumption of natural resources and reduce the burden of pollutants on the environment. The cost of natural resources is increased day by day. They have forced to focus on recovery, reuse of natural resources and find other alternatives. Presently large amounts of PVC waste are generated in pipe with an industries important impact on environment and humans. The use of the replacement materials offer cost reduction, energy savings, arguably superior products, and fewer hazards in the environment. Concrete volume contains from 65-80% aggregate and it plays a substantial role in concrete properties such as

workability, strength, dimensional stability, and durability, so the use of waste materials in concrete as aggregates can effect in the amount of waste materials deeply. Lightweight aggregate is an important material in reducing the unit weight ofconcrete.

Plastic is one of the most significant innovations of 20th century material. The amount of plastic consumed annually has been growing steadily and becomes a serious environmental problem. For solving the disposal of large amount of recycled plastic material, use of plastic in concrete industry is considered as feasible application. Plastics are polymers, a very large molecule made up of smaller units called monomers which are joined together in a chain by a process called polymerization. The polymers generally contain carbon and hydrogen with, sometimes, other elements such as oxygen, nitrogen, chlorine or fluorine (UNEP, 2009). Plastics have become an integral part of our lives. The amount of plastics consumed annually has been growing steadily. Its low density, strength, user-friendly designs, fabrication capabilities, long life, lightweight, and low cost are the factors behind such phenomenal growth. Plastics have been used in packaging, automotive and industrial applications, medical delivery systems, artificial implants, other healthcare applications, water desalination, land/soil conservation, flood prevention, preservation and distribution of food, communication materials, housing. security systems, and other uses. With such large and varying applications, plastics contribute to an ever increasing volume in the solid waste stream. The world's annual consumption of plastic materials has increased from around 5 million tons in the 1950s to nearly100 million tons in 2001 (Siddique et al., 2008).

II. LITERATUREREVIEW

(1)Youcef Ghernouti et al.(1997) The study present the partial replacement of fine aggregate in concrete by using plastic fine aggregate obtained from the crushing of waste plastic bags. Plastic bags waste was heated followed by cooling of liquid waste which was then cooled and crushed to obtained plastic sand having finesse modulus of 4.7. Fine aggregate in the mix proportion of concrete was replaced with plastic bag waste sand at 10%, 20%, 30% and 40% whereas other concrete materials remain same for all four mixes. In fresh properties of concrete it was observed from the results of slump test that with increase of waste content workability of concrete increases which is favorable for concrete because plastic cannot absorb water therefore excessive water is available

(2)Pramod S.Patil.et al(1999) This study presents the use of plastic recycled aggregate as replacement of coarse aggregate for production of concrete. They used forty eight specimen and six beams/cylinders casted from variable plastic percentages (0, 10, 20, 30, 40 and 50%) used as replacement of coarse aggregate in concrete mixes. They have conducted various tests and observed decrease in density of concrete with increase percentage of replacement of aggregate with recycle plastic concrete. They also reported decrease in compressive strength for 7 and 28 days with increase in percentage of replacement of coarse aggregate with recycle plastic aggregate. They have recommended feasibility of replacing 20 % will satisfy the permissible limits of strength.

(3)R L Ramesh et al.(2000) They have used waste plastic of low density poly ethylene as replacement to coarse aggregate to determine its viable application in construction industry and to study the behavior of fresh and harden concrete properties. Different concrete mix were prepared with varying proportions (0%, 20%, 30% & 40%) of recycle plastic aggregate obtained by heat treatment of plastic waste (160-200 centigrade) in plastic granular recycling machine. A concrete mix design with 1: 1.5: 3 proportions was used having 0.5 water/cement ratio having varying proportion of plastic aggregate as replacement of crushed stone. Proper mixing was ensured and homogeneous mixture was prepared. A clear reduction in compressive strength was reported with increase in percentage of replacing plastic aggregate with crushed aggregate at 7, 14 and 28 days of casted cubes (80% strength achieved by replacing waste plastic up to 30%). The research highlights the potential application of plastic aggregate in light weight aggregate.

(4)Raghatate Atul M.(2002) The paper is

based on experimental results of concrete sample casted with use of plastic bags pieces to study the compressive and split tensile strength. He used concrete mix by using Ordinary Portland Cement. Natural River sand as fine aggregate and crushed granite stones as coarse aggregate, portable water free from impurities and containing varying percentage of waste plastic bags (0%, 0.2%, 0.4%, 0.6% 0.8% and 1.0%). Compressive strength of concrete specimen is affected by the addition of plastic bags and with increasing percentage of plastic bag pieces compressive strength goes on decreasing (20% decrease in compressive strength with 1% of addition of plastic bag pieces). On other hand increase in tensile strength of concrete was observed by adding up to 0.8% of plastic bag pieces in the concrete mix afterward it start decreasing when adding more than 0.8% of plastic bags pieces

III. MATERIALS ANDMETHODOLOGY

- **1.1 Cement:**OrdinaryPortlandCement(OPC)of53g radeofCementconformingtoIS:12269 standards has been procured and various tests have been carried out according IS: 8112-1989 from them it is foundthat
- a) Specific Gravity of Cement is 3.14
- b) Wegetinitialsettingtimeof40minandfinalsetting timeof395min
- c) 5% is the fineness ofcement
- 1.2 FineAggregates: Thenaturalriversandistakenfr omtheusualplaceanditisconfirmedtograding zone-IIfromtheTable4ofIS383-1970.Someofthetestshavebeenvotedforoutasper thetechnique given in IS383(1970)
- a) Fine aggregate specific gravity is 2.64
- b) Fineness Modulus of Fine Aggregate is3.05
- 1.3 CoarseAggregates:FromIS383-1970consisting20mmmaximumsizeofaggregate shasbeen takenfromthelocalquarryindustry.Afterthatwete stedtheaggregatephysicallyandmechanically mainlysuchasspecificgravityandsieveanalysisre sultsarewrittenasbelow
- a) CA Specific Gravity is2.79
- b) CA Fineness Modulus of 7.408
- **1.4 Water:**Formixingandcuringpurposelocaldrinki ngwaterfreeflowimpuritieshasbeenusedin thisprogram

3.5 pvc waste: pvc waste can be used in concrete to improve its strength and durability . pvc waste can be used as a partial replacement of fine

aggregate, the pvc waste is gathered from nearby SURYA PVC COMPANY PVT LIMITED situated near pattipadu ,West Godavari, A.P.

S.no	Property	Obtained value
1	Density	1.38g/cm3
2	Specific gravity	0.55
3	Water absorption	0.654%
4.	Finess modulus	4.34

3.6 MIX DESIGN

Table 3.2 Material required for M25 grade concrete per cubic meter quantity of concrete:

Material	Water	Cement	Fineaggregate	Coarse Aggregate
Kg/m ³	197	394	680.16	1172.80
Ratio	0.50	1	1.76	2.97

 Table 3.3 Material required for M30 grade concrete per cubic meter quantity of concrete:

Material	Water	Cement	Fine aggregate	Coarse
				Aggregate
Kg/m ³	197	437	649.57	1150.31
Ratio	0.45	1	1.48	2.62

3.7 Durabilitytest:

3.7.1 Acid attack

nitric, hydrochloric Sulphuric, and phosphoric acids these are the mineral acids to attack the concrete.Ordinary Portland Cement (OPC) is highly alkaline in nature with pH values above 12. When the cement paste comes into contact with the acids its components break down, this phenomenon is known as acid attack. If pH decreases to values lower than stability limits of cement hydrates, then the corresponding hydrate loses calcium and decomposes to amorphous hydrogel. The final reaction products of acid attack are the corresponding calcium salts of the acid as well as hydrogels of silicium, aluminum, and ferric oxid.HCL acid have been performed in this study.

In the present experimental investigation, Acid attack test was performed on Concrete cubes of size

100mm×100mm×100mmwerecastandstoredinaplac eatroomtemperaturefor24hoursandthen the specimens were demoulded and kept for curing in water for days. 3 specimens were taken out from water tank and recorded their respective weight and compressive strength. After 28 days, again these specimens have been exposed to 5% concentrated HCl and water. After completion of the exposure period of 56, and 84 days percentage loss of weight of specimens and loss of compressive strength with respect to reference concrete have been calculated. Themasslossduetodeteriorationofconcretewascalcul atedafter28daysofimmersionby using the followingformula

Mass loss =
$$[Mi - Mf] \times 100$$

Mi where,

 M_i = Initial mass of concrete specimen before immersion

 M_{f} = Final mass of concrete specimen after immersion

3.7.2 Marine attack

About 80 percent of the surface of the earth are covered by oceans; therefore, a large number of structures are exposed to sea water with high salinity either directly, or indirectly when winds carries sea water spray up to a few miles inland from the coast. As a result, several coastal and offshore sea structures are exposed to the

continuous action of physical and chemical deterioration processes. This challenge of building and maintaining durable concrete structures in coastal environs have long become a serious issue to the people living in this areas and this provides an excellent opportunity to understand the complexity of concrete durability problems in these areas.

NORMAL WATER	TEST	MARINE WATER
6.30	РН	7.9
0.0060	CONCENTRATION	0.097
250ppm	HARDNESS	4850ppm
20ppm	ACIDITY	100ppm
22ppm	ALKANITY	25ppm

Table 3.4	Chemical Analy	vsis of Fresh	water and Sea	a water
	Chemical I mai		water and bee	i water

In order to study the durability behavior of PVC waste aggregate concrete, a total of specimens 133 were cast. Mixing of ingredients of specimens has been shown in the fig. For experimentation programme, cube specimens have been cast as per given schedule and kept curing for 28 days. After curing days, 3 specimens were taken out from water tank and recorded their respective weight and compressive strength. After 28 days, again these specimens have been exposed to marine water.After completion of the exposure period of 56 and 84 days percentage loss of weight of specimens and loss of compressive strength with respect to reference concrete have been calculated.

IV. RESULTS ANDDISCUSSIONS: 4.1Acid AttackResults:

The behavior of acids on solidified concrete is the exchange the ferrous compounds into the ferrous salts of the striking acid. It is experienced to additional loss of weight.

Theexperimentresultsofacidattacktestwith5% Hydro chloric acid(HCL)ofM25 &M30 gradeconcrete loss of weight and loss of compressive strength withdifferentproportionsofpvc wasteisdisplayedin Table 4.1,4.2,4.3& 4.4Thelossof weight and loss ofcompressive strength of M25 &M30gradeconcretewithalteredpercentagesof Pvc waste is shown in Figure 4.1,4.2,4.3&4.4

S.No	Percentage of replacement with PVC waste	Weight of cubes cured in water after 28 days (gms)	Weight of cubes subjected to acid exposure after 56 days (gms)	Weight of cubes subjected to acid exposure after 84 days (gms)	% of weight loss after 56 days	% of weight loss after 84 days
1	0	2529	2508	2487	0.837	1.688
2	2.5	2416	2390	2349	1.087	2.852
3	5.0	2213	2175	2142	1.747	3.314
4	7.5	1987	1946	1909	2.106	4.085
5	10	1847	1804	1771	2.383	4.291
6	12.5	1726	1680	1652	2.738	4.479
7	15.0	1697	1650	1619	2.848	4.817

Table 4.1: Acid test results on weight loss of PVC waste with fine aggregate replacement of M25 grade

Table 4.2: Acid test results on weight loss of PVC waste with fine aggregate replacement of M30 grade

S.No	Percentage	of	Weigh	t of	Weight	of	Weight	of	% of weight	% of weight
	replacemen	t	cubes	cured	cubes		cubes		loss after 56	loss after 84
	with PV	C/C	in	water	subjected	to	subjected	to	days	days
	waste		after	28	acid		acid			
			days		exposure		exposure			
			(gms)		after	56	after	84		

			days (gms)	days (gms)		
1	0	2662	2651	2638	0.414	0.909
2	2.5	2473	2456	2441	0.692	1.310
3	5.0	2289	2267	2249	0.970	1.778
4	7.5	2096	2072	2051	1.158	2.243
5	10	1991	1967	1945	1.220	2.365
6	12.5	1897	1872	1851	1.335	2.485
7	15.0	1810	1783	1765	1.514	2.549

S.No	% of replacement with pvc	Compressive Strength of cubes after 28 days curring(MPa)	Strength of cubes exposure to the 5% concentrated HCl acid after 56 days (MPa)	Strength of cubes exposure to the 5% concentrated HCl acid after 84 days (MPa)	% of strength loss after 56 days exposure the HCL	% of strength loss after 84 days exposure the HCL
1	0	23.83	22.50	21.67	5.58	9.06
2	2.5	25.67	25.00	24.50	2.61	4.55
3	5.0	29.33	28.16	27.83	3.98	5.11
4	7.5	30.83	29.50	28.67	4.31	7.00
5	10.0	18.16	17.33	16.67	5.45	9.05
6	12.5	13.67	12.67	12.00	7.32	12.21
7	15.0	10.00	8.83	7.83	11.70	21.70

Table 4.3: Compressive strength loss of pvc waste with fine aggregate replacement with Acid attack of
M25 grade

Table 4.4: Compressive strength loss of pvc waste with fine aggregate replacement with	Acid attack of
M30 grade	

S.no	% of replacement with pvc	Compressive Strength of cubes after 28 days	Strength of cubes exposure to the 5% concentrated	Strengthofcubesexposuretothe5%concentrated	% of strength loss after 56 days	% of strength loss after 84 days
		curing(MPa)	HCl acid after	HCl acid after	exposure	exposure
			56 days (MPa)	84 days (MPa)	the HCL	the HCL
1	0	29.16	27.83	27.00	4.56	7.40
2	2.5	31.33	30.67	30.33	2.11	3.20
3	5.0	33.00	32.00	31.16	3.03	5.57
4	7.5	28.33	27.50	26.83	4.69	6.93
5	10.0	23.16	21.83	21.33	5.74	7.90
6	12.5	17.67	16.50	15.83	6.62	10.41
7	15.0	12.33	11.33	10.67	8.11	13.46

Each and every concrete specimen gets affected by acid attack. From the test results, it was noted that the % of loss of weight for controlled concrete(i.e 0%) of M25 grade for 56 days is 0.837 & 84 days is 1.688%., it was noted that the % of loss of weight for controlled concrete (i.e 0%) of M30 grade for 56 days is 0.414 & 84 days is 0.909%.Hence according to results grade of concrete should be increase weight loss reduced. According to results The%oflossofweightofconcretecubesfound more at15% substituteofpvc waste compare to without replacement.

it was noted that the % of loss of compressive strength for controlled concrete (i.e 0%) of M25 grade for 56 days is 5.58 & 84 days is 9.06%., it was noted that the % of loss of weight for controlled concrete (i.e 0%) of M30 grade for 56 days is 4.56 & 84 days is 7.40%. Hence according to results grade of concrete should be

increase loss of compressive strength reduced. According to result the% oflossofcompressivestrengthofconcretecubesfound more at0% substituteofpvc waste upto 7.5% compare to without replacement . Hence pvc waste resist the acid attack upto 7.5% replacement

GRAPH 4.3 COMPARISON OF COMPRESSIVE STRENGTH OF NORMAL & ACID CURING M25

4.2Marine AttackResults:

It is experienced to additional loss of weight. The experiment results of Marine attack test of M25 & M30 grade concrete with different proportions of pvc waste is displayed in Table4.3,4.4,4.5& 4.6.The difference of loss of weight of M25 and M30 grade concrete with altered percentages of Pvc waste is shown in Figure 4.5,4.6, 4.7 & 4.8

S.No	Percentage of replacement with PVC waste	Weight of cubes cured in water after 28 days (gms)	Weight of cubes subjected to acid exposure after 56 days (gms)	Weight of cubes subjected to acid exposure after 84 days (gms)	% of weight loss after 56 days	% of weight loss after 84 days
1	0	2529	2521	2501	0.716	1.119
2	2.5	2416	2389	2375	1.130	1.726
3	5.0	2213	2180	2160	1.513	2.453
4	7.5	1987	1950	1926	1.897	3.167
5	10	1847	1807	1785	2.213	3.473
6	12.5	1726	1697	1651	2.799	4.542
7	15.0	1697	1649	1612	2.910	5.272

Table 4.5: Marine test results on weight loss of PVC waste with fine aggregate replacement of M25 grade

Table 4.6: Marine test results on weight loss of PVC waste with fine aggregate replacement of M30 grade

S.No	Percentage of	Weight of	Weight of	Weight of	% of weight	% of weight
	replacement	cubes cured	cubes	cubes	loss after 56	loss after 84
	with PVC	in water	subjected to	subjected to	days	days
	waste	after 28	acid	acid		
		days	exposure	exposure		
		(gms)	after 56	after 84		
			days	days		
			(gms)	(gms)		
1	0	2662	2655	2649	0.263	0.490
2	2.5	2473	2459	2454	0.569	0.774
3	5.0	2289	2269	2262	0.881	1.193
4	7.5	2096	2073	2065	1.109	1.452
5	10	1991	1967	1953	1.220	1.945
6	12.5	1897	1869	1858	1.498	2.099
7	15.0	1810	1780	1765	1.685	2.549

Each and every concrete specimen gets affected by marine attack. From the test results, it was noted that the % of loss of weight for controlled concrete(i.e 0%) of M25 grade for 56 days is 0.716% & 84 days is 1.199%., it was noted that the % of loss of weight for controlled concrete

(i.e 0%) of M30 grade for 56 days is 0.263 & 84 days is 0.909%.Hence according to results grade of concrete should be increase weight loss reduced. According to results The% of loss of weight ofconcretecubesfoundlessfor acid attack compare to marine attack at 15% replacement with pvc waste .

GRAPH 4.5: MARINE TEST RESULTS ON % OF WEIGHT LOSS OF M25

Fable 4.7: Compressive	strength of pv	c waste with	n fine aggre	gate replaceme	nt with
	Marine att	ack of M25	orade		

Marine attack of M25 grade								
s.no	% of	Compressive	Strength of	Strength of	% of strength	% of		
	replacement	Strength of	cubes	cubes	gain after 56	strength		
	with pvc	cubes after	exposure to	exposure to	days exposure	gain after		
		28 days	the marine	the marine	the marine	84 days		
		curring(MPa)	after 56 days	after 84days	water	exposure		
			(MPa)	(MPa)		the marine		
						water		
1	0	23.83	22.67	21.83	-4.86	-8.39		
2	2.5	25.67	27.33	28.33	6.46	10.40		
3	5.0	29.33	31.67	32.83	7.97	11.93		
4	7.5	30.83	33.33	34.67	8.10	12.45		

5	10.0	18.16	19.83	20.50	9.19	12.88
6	12.5	13.67	15.00	15.67	9.73	14.63
7	15.0	10.00	11.16	11.67	11.60	16.67

 Table 4.8: Compressive strength of pvc waste with fine aggregate replacement with

 Marine attack of M30 grade

	Marine addex of M50 grade							
s.n	% of	Compres	Strength of	Strength of	% of	% of		
0	replace	sive	cubes exposure	cubes exposure	strength	strength		
	ment	Strength	to the marine	to the marine	gain after 56	gain after 84		
	with pyc	of cubes	after 56days	after 84days	davs	davs		
	······································	after 28	(MPa)	(MPa)	exposure	exposure		
		dave 20	(Influ)	(WII u)	the marine	the marine		
		uays						
		curing			water	water		
		(MPa)						
1	0	29.16	28.00	27.33	-3.97	-6.27		
2	2.5	31.33	32.50	33.33	3.73	6.38		
3	5.0	33.00	34 67	35 50	5.06	7 57		
5	5.0	22.00	51.07	55.50	5.00	1.57		
4	75	28.83	30.67	31.00	6.08	8 1 2		
4	1.5	20.05	50.07	51.00	0.90	0.12		
	10.0				0.11			
5	10.0	23.16	25.16	26.00	8.64	11.14		
6	12.5	17.67	19.50	20.16	10.35	14.09		
7	15.0	12.33	13.83	14.50	12.16	17.59		

Each and every concrete specimen gets affected by marine attack. From the test results, it was noted that the % of loss of compressive strength for controlled concrete(i.e 0%) of M25 grade for 56 days is 4.86% & 84 days is 8.39%., it was noted that the % of loss of compressive strength for controlled concrete (i.e 0%) of M30 grade for 56 days is 3.97 & 84 days is 6.27%. Hence according to results grade of concrete should be increase compressive strength loss reduced. According to results in themarine attack% of compressivestrength should be increased with replacement of pvc becauseof alkali reactive aggregates are present in concrete.

V. CONCLUSIONS:

The present study of effect is alarmed with the estimation of the performance of pvc waste in concrete. Experimental investigation was carried out to study the durability properties of concrete.

The following conclusions were knows at from the experimental investigation:

- 1. So, accordance to above result M25& M30 grade got the 7.5 & 5.0% Optimum percentage of replacement of PVC waste in concrete is determined.
- 2. Compare to M25 & M30 grade in acid attack compressive strength loss results, M30 grade less compressive strength loss obtained.
- 3. Compare to acid attack & marine attack weight loss results, marine attack less weight loss obtained.
- 4. When comparison of Compressive strength results for normal &marine curing of M25 &M30 grade the strength was littlie increased when curing period was increased. According to chemical compositionof seawater has a total salinity of about 3.5 percent (78 percent of the dissolved solids being NaCl and 15percent MgCl2 and MgSO4) and produces a slightly higher early strength but a lower long term strength.

REFERENCES

[1]. Kou S.C., Lee G., Poon C.S., Lai W.L.," Properties of lightweight aggregate concrete prepared with PVC granules derived from scraped PVC pipes" Waste Management 29 (2009) 621–628.

- [2]. Al-Manaseer A.A., Dalal T.R., "Concrete containing plastic aggregates Concrete".International 19 (8)1997, 47–52.
- [3]. Choi, Y.W., Moon, D.J., Chumg, J.S., Cho, S.K., "Effects of waste PET bottles aggregate on the properties of concrete", Cement and Concrete Research 35, 2005, 776–781.
- [4]. Badra A., Ashourb A. F., Plattena A. K., "Statistical variations in impact resistance of polypropylene fibre-reinforced concrete", International Journal of Impact Engineering 32 (2006) 1907–1920.
- [5]. Frigione M., "Recycling of PET bottles as fine aggregate in concrete", Waste Management 30 (2010),1101–1106.
- [6]. Ismail Z.Z., AL-Hashmi E.A., "Use of waste plastic in concrete mixture as aggregate replacement", Waste Management 28 (2008) 2041–2047.
- [7]. Marzouk O.Y., Dheilly R.M., Queneudec M., "Valorisation of post-consumer plastic waste in cementitious concrete composites", Waste Management 27 (2007).
- [8].